MA 681, Spring 2013

Assignment 2.

Convergence in \mathbb{C} . The extended complex plane. Map 1/z.

This assignment is due Wednesday, Jan 30. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

- (1) Suppose the sequence (z_n) in \mathbb{C} converges to $z \in \mathbb{C}$ as $n \to \infty$.
 - (a) Is it true that $|z_n| \to |z|$, $\operatorname{Re} z_n \to \operatorname{Re} z$, $\operatorname{Im} z_n \to \operatorname{Im} z$ $(n \to \infty)$?
 - (b) Is it true that $\arg z_n \to \arg z \ (n \to \infty)$? (*Hint:* Consider z = 0.)
 - (c) Is it true that $\arg z_n \to \arg z \ (n \to \infty)$, provided $z \neq 0$? (*Hint:* Still no.)
 - (d) Provided $z \neq 0$, is it possible to choose a value φ_n of $\operatorname{Arg} z_n$ for each n so that $\varphi_n \to \operatorname{arg} z \ (n \to \infty)$?
- (2) Suppose the sequence (z_n) in \mathbb{C} converges to infinity as $n \to \infty$. What does this imply about $|z_n|$, Re z_n , Im z_n , Arg z_n ?
- (3) Assuming arithmetic operations on $\overline{\mathbb{C}}$ are defined via arithmetic operations on the corresponding sequences, give examples showing why $\infty \infty$, $0 \cdot \infty$, ∞/∞ , 0/0 are meaningless.
- (4) Find and sketch the images of the following curves under the transformation w = 1/z (*Hint:* It is probably more convenient to use complex equations for the families below):
 - (a) The family of circles $x^2 + y^2 = ax$ $(a \in \mathbb{R})$. Remark: compare to Prob. 9 of HW1.
 - (a') The family of vertical lines $\operatorname{Re} z = a \ (a \in \mathbb{R}).$
 - (b) The family of circles $x^2 + y^2 = by$ $(b \in \mathbb{R})$. Remark: compare to Prob. 9 of HW1.
 - (b') The family of horizontal lines $\operatorname{Im} z = b \ (b \in \mathbb{R})$.
 - (c) The family of parallel lines y = x + b ($b \in \mathbb{R}$).
 - (d) The family of lines y = kx passing through the origin $(k \in \mathbb{R})$.
- (5) Find and sketch the images of the following regions on $\overline{\mathbb{C}}$ under the transformation w = 1/z (*Hint:* Borders go to borders):
 - (a) The quadrant x > 0, y > 0.
 - (b) The strip 0 < x < 1.
 - (c) The half-plane x > 10.
 - (d) The outside of a circle $x^2 + (y-1)^2 = 1$ (i.e. the region $x^2 + (y-1)^2 > 1$).
 - (e) The outside of a circle $x^2 + (y-2)^2 = 1$ (i.e. the region $x^2 + (y-2)^2 > 1$).
 - (f) The square $-1 \le x \le 1, -1 \le y \le 1$.
 - (g) The square $-\sqrt{2}/2 \le x + y \le \sqrt{2}/2, -\sqrt{2}/2 \le x y \le \sqrt{2}/2.$
 - (h) The upper half-disc |z| < 1, Im z > 0.